


Recent Studies on PM Sources Molecular markers and source-oriented and/or receptor-oriented chemical mass balance models Most thorough apportionment of PM sources Few laboratories capable of doing analysis Expensive Labor intensive

Major Particulate Sources and Corresponding Molecular Markers				
Source	Examples of Molecular Markers			
Diesel Exhaust	EC, Hopanes, Steranes, PAHs, Carbonyls			
Automobile Exhaust	Hopanes, Steranes, Benzo[ghi]perylene (BGP), EC (small amounts)			
Meat Charbroiling	PAHs, Cholestenol, Nonanal, Oleic Acid, EC (small amounts)			
Biomass Burning	Levoglucosan, Pimaric Acid			
Tire Rubber	Particle Bound PAHs, EC (small amounts)			
Coal Combustion	Sulphates			
Paved Road Dust	Triacontane, Hentriacontane, Dotriacontane, Tetracontane			
Natural Gas Combustion	Benz[de]anthracen-7-one			

			Diesel Automobile			
Location	Date E	C/OC Method	%	Exhaust %	Burning	Othe
South Coast Basin	1982 F	luntzicker et al	67	11		22
Downtown LA West LA	1982 Average		94	3.5	1.1	1.0
Pasadena	1982 Average		89 96	5.5 1.2	3.3 0.7	2.2 1.7
Rubidoux	1982 Average		96 88	5.9	3.6	2.4
Los Angeles Basin	1993 Average	NIOSH	57	19	6.4	17
Bakersfield, CA	Winter 1995	NIOSH	86	1.2	11	1.6
Fresno, CA	Winter 1995	NIOSH	80	0.8	18	1.4
Brighton, CO	Winter 96-97	IMPROVE	66	26	2.2	5.1
Welby, CO	Winter 96-97	IMPROVE	51	42	4.2	2.5
Southeastern US	January 2000	NIOSH	74	0.3	25	0.7
Southeastern US	April 1999	NIOSH	84	0.8	14	0.6
Southeastern US	July 1999	NIOSH	92	0.1	7.4	1.0
Southeastern US	October 1999	NIOSH	85	0.2	15	0.5

Proposed Analysis
■ PM ₁₀ and PM _{2.5} Measurements
 EC/OC measured via IMPROVE method on all PM₁₀ and PM_{2.5} samples
■ EC/OC measured via NIOSH method on 5-10% of the PM ₁₀ and PM _{2.5} samples

Concluding Remarks

- Establish EC trend in South Coast Basin
- Determine best way to calculate diesel's contribution to ambient PM concentrations in the Basin
 - Compare updated results to results calculated using Gray (1986) factor
 - Use updated emissions inventory and recent literature and incorporate into a sourceoriented model
 - Other Alternative Approaches?
 - Determine possibility of analyzing a small fraction of PM samples for molecular markers

References

- -Gray, A.H., Control of Atmospheric Fin Primary Carbon Particle Concentrations, Report

- Schauer et al. Source apportionment of airborne particulate matter using organic compounds as tracers, Atmos. Environ 30, 3837-3855 (1996)
- as navers, names. Enhances and society and society
- -Hannigan, M. Mutagenic particulate matter in air pollutant source emissions and the ambient air, Environ Eng Sci, Cal Tech, 221(1997) -Watson et al., Northern Front Range Air Quality Study (NFRAQS) Final Report, Chpt 4, DRI (1998)
- atson and Valberg, Carbon black and soot: two different substances, AlHAJ, 62, 218-228 (2001)
- -Christoforou et al., Trends in fine particle concentration and chemical composition in Southern California, J Air Water Manage Assoc, 50, 43-53 (2000)